Semantic Theory Lecture 6: Lambda Abstraction

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Quantification in NL: A Challenge for Compositional Semantics

Every student presented a paper

The type-theoretic analysis of quantificational NPs

- is truth-conditional and strictly compositional at the same time
- enables a unified interpretation of noun phrases of various kinds

However:

- no connection between semantic representation and FOL quantifiers (deduction calculi! theorem provers!)

How can we bring first-order logic into play again?

Lambda Abstraction: Motivation

John drinks and drives
Someone drinks and drives

Drinking is unwise
Drinking and driving is unwise

Swimming is healthy
Not smoking is healthy

Lambda Abstraction: Example

■ $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right]$

- ... denotes the property of "being an x such that x drives and drinks".
- λ-abstraction in the above case is applied to a type t expression, with the effect that the argument position(s) marked by variable x are "opened", thus creating the complex predicate $\lambda x\left[\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right]$.

$$
\begin{gathered}
\frac{\text { drive': }\langle\mathrm{e}, \mathrm{t}\rangle \mathrm{x}: \mathrm{e}}{\frac{\operatorname{drive}^{\prime}(\mathrm{x}): \mathrm{t}}{\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x}): \mathrm{t}} \frac{\operatorname{drink}^{\prime}(\mathrm{x}): \mathrm{t}}{\mathrm{~d}}} \mathrm{x:e} \\
\mathrm{j}^{*}: \mathrm{e} \quad \lambda x\left[\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right]:\langle\mathrm{e}, \mathrm{t}\rangle \\
\lambda x\left[\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right]\left(\mathrm{j}^{*}\right): \mathrm{t}
\end{gathered}
$$

More Examples

John drinks and drives
$\lambda x\left[\operatorname{drink}^{\prime}(x) \wedge\right.$ drive $\left.\left.^{\prime}(x)\right]\right)\left(j^{*}\right)$
Someone drinks and drives
someone‘($\lambda x\left[\operatorname{drink}^{\prime}(\mathrm{x}) \wedge\right.$ drive $^{\prime}(\mathrm{x})$])
Drinking and driving is unwise
\neg wise'(λx. drink' $^{\prime}(x) \wedge$ drive' $^{(x)}$)
Not smoking is healthy
healthy'($\lambda x . \neg s m o k e{ }^{\prime}(x)$)

The Language of Typed Lambda Calculus

- By adding (a generalized version of) the abstraction rule to the language of Type Theory, we extend it to Typed Lambda Calculus:

$$
\text { If } \alpha \in W E \tau \text { and } v \in \operatorname{VAR}_{\sigma} \text {, then } \lambda v \alpha \in \mathrm{WE}_{\langle\sigma, \tau\rangle} .
$$

- Notational convention: The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets. We often use the "dot notation" λx.A indicating that the λ-operator takes widest possible scope.

Typed Lambda Calculus: Syntax

- The sets of well-formed expressions $\mathbf{W E}_{\tau}$ for every type τ are given by:
(i) $\mathrm{CON}_{\tau} \subseteq \mathrm{WE}_{\tau}$ and $\mathrm{VAR}_{\tau} \subseteq \mathrm{WE}_{\tau}$, for every type τ
(ii) If α is in $W E_{(\sigma, \tau)}, \beta$ in $W E_{\sigma}$, then $\alpha(\beta) \in W E_{\tau}$.
(iii) If φ, ψ are in $W E_{t}$, then $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \rightarrow \psi)$ are in WE_{t}.
(iv) If φ is in WE_{t} and v is a variable of arbitrary type, then $\forall \mathrm{v} \varphi$ and $\exists v \varphi$ are in $W E$.
(v) If α, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$.
(vi) If $\alpha \in$ WET and $v \in \operatorname{VAR}_{\sigma}$, then $\lambda v \alpha \in \mathrm{WE}_{(\sigma, \tau)}$.

Example

■ $\llbracket \lambda x\left(\operatorname{drink}^{\prime}(x) \wedge\right.$ drive' $\left.(x)\right) \rrbracket^{M, g}=$ the $f: D_{e} \rightarrow D_{t}$ such that for all $a \in D_{e}, f(a)=\llbracket \operatorname{drink}^{\prime}(x) \wedge \operatorname{drive}^{\prime}(x) \rrbracket^{M, g[v / a]}$

- $\mathrm{f}(\mathrm{a})=1 \quad$ iff $\quad \llbracket \mathrm{drink}^{\prime}(\mathrm{x}) \wedge$ drive' $(\mathrm{x}) \rrbracket^{\mathrm{M}, g[\mathrm{~g} / \mathrm{da]}}=1$

iff $\quad \mathrm{V}_{\mathrm{M}}($ drink' $)\left(\llbracket \times \rrbracket^{\mathrm{M}, g[\mathrm{~V} / \mathrm{d}]}\right)=\mathrm{V}_{\mathrm{M}}($ drive $)\left(\llbracket \times \rrbracket^{\mathrm{M}, g[\mathrm{~V} / \mathrm{d}]}\right)=1$
iff $\quad V_{M}\left(\right.$ drink' $\left.^{\prime}\right)(\mathrm{a})=\mathrm{V}_{\mathrm{M}}($ drive' $)(\mathrm{a})=1$
iff $\quad a \in V_{M}(d r i n k ') \cap V_{M}(d r i v e ')$
- $\llbracket \lambda x\left(\operatorname{drink}^{\prime}(x) \wedge \operatorname{drive}^{\prime}(x)\right)\left(j^{*}\right) \rrbracket^{M, g}=1 \quad$ iff
$\llbracket \lambda x\left(\operatorname{drink}^{\prime}(x) \wedge \operatorname{drive}^{\prime}(x) \rrbracket^{M, g\left([j]^{*} \rrbracket^{M, g}\right)}=1 \quad\right.$ iff
$\mathrm{V}_{\mathrm{M}}\left(\mathrm{j}^{*}\right) \in \mathrm{V}_{\mathrm{M}}\left(\right.$ drink') $\cap \mathrm{V}_{\mathrm{M}}($ drive')

Lambda Abstraction: Interpretation

$■ \llbracket \lambda v \alpha \rrbracket^{M, g}$ is that function $f: D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}, f(a)=\llbracket \alpha \rrbracket^{M, g[v / a]}$
(for $\alpha \in \mathrm{WE}_{\tau}, \mathrm{v} \in \mathrm{VAR}_{\sigma}$)

Typed Lambda Calculus: Interpretation

- Interpretation with respect to a model structure $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ and a variable assignment \mathbf{g} :
(i) $\llbracket \alpha \rrbracket^{M, g}=V(\alpha)$, if α is a constant
$\llbracket \alpha \rrbracket^{\mathrm{M}, g}=\mathrm{g}(\alpha)$, if α is a variable
(ii) $\llbracket \alpha(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \alpha \rrbracket^{\mathrm{M}, g}\left(\llbracket \beta \rrbracket^{\mathrm{M}, \mathrm{g}}\right)$
(iiii) $\llbracket \neg \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ iff $\llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=0$
$\llbracket \varphi \wedge \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \mathrm{iff} \llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \varphi \vee \psi \rrbracket^{\mathbb{M}, g}=1$ iff $\llbracket \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ or $\llbracket \psi \rrbracket^{\mathrm{M}, g}=1$
(iv) $\llbracket \alpha=\beta \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \mathrm{iff} \llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \beta \rrbracket^{\mathrm{M}, \mathrm{g}}$
(v) $\llbracket \exists v \varphi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ iff there is a $d \in \mathrm{D}_{\tau}$ such that $\llbracket \varphi \rrbracket^{\mathrm{M}, g[\mathrm{v} / \mathrm{d}]}=1$, if $v \in \operatorname{VAR}_{\tau}$ $\llbracket \forall v \varphi \rrbracket^{M, g}=1$ iff for all $d \in D_{\tau}: \llbracket \varphi \mathbb{1}^{M, g[v / d]}=1$, if $v \in V^{M} R_{\tau}$
(vi) $\llbracket \lambda v \alpha \rrbracket^{M, g}=f: D_{\sigma} \rightarrow D_{\tau}$, with $f(a)=\llbracket \alpha \rrbracket^{M, g[v / a]}$ for all $a \in D_{\sigma}$, if $v \in \operatorname{VAR}_{\sigma}$ and $\alpha \in \mathrm{WE}_{\tau}$

NL Quantifier Expressions: Interpretation

- someone' $\in \operatorname{CON}_{\langle\langle e, t\rangle, t\rangle}$, so $\mathrm{V}_{\mathrm{M}}($ someone' $) \in \mathrm{D}_{\langle(\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle}$
- $D_{\langle\langle e, t\rangle, t\rangle}$ is the set of functions from $D_{\langle e, t\rangle}$ to D_{t}, i.e., the set of functions from $\mathcal{P}(\mathrm{U})$ to $\{0,1\}$, which in turn is equivalent to $\mathcal{P}(\mathcal{P}(U))$.
- Thus, $\mathrm{V}_{\mathrm{M}}($ someone' $) \subseteq \mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)$. More specifically:
- $\mathrm{V}_{\mathrm{M}}($ someone' $)=\left\{\mathrm{S} \subseteq \mathrm{U}_{\mathrm{M}} \mid S \neq \varnothing\right\}$, if U_{M} is a domain of persons

Example, Continued

- If the λ-expression is applied to an overt argument, we can simplify the interpretation:
- $\llbracket \lambda v \alpha(\beta) \rrbracket^{M, g}=\llbracket \alpha \rrbracket^{M, g\left[v /[\beta]^{M, g]}\right.}$
- Example:
- $\llbracket \lambda x\left(\operatorname{drink}^{\prime}(x) \wedge \operatorname{drive}^{\prime}(x)\right)\left(j^{*}\right) \rrbracket^{\mathrm{M}, g}=1$
- iff $\llbracket \operatorname{drink}^{\prime}(x) \wedge$ drive $^{\prime}(x) \rrbracket^{M, g[x /[j * * \mathbb{M}, g]}=1$
- iff $\llbracket \operatorname{drink}^{\prime}(x) \wedge$ drive ${ }^{\prime}(x) \rrbracket^{M, g\left[x / N_{M}\left(j^{*}\right)\right]}=1$
- iff $\llbracket \operatorname{drink}^{\prime}(\mathrm{x}) \rrbracket^{\mathrm{M}, g\left[x N_{M}\left(\mathrm{j}^{*}\right)\right]}=\llbracket$ drive $(\mathrm{x}) \rrbracket^{\mathrm{M}, g\left[x / N_{M}\left(\mathrm{j}^{*}\right)\right]}=1$
- iff $\mathrm{V}_{\mathrm{M}}\left(\right.$ drink $\left.^{\prime}\right)\left(\mathrm{V}_{\mathrm{M}}\left(\mathrm{j}^{*}\right)\right)=\mathrm{V}_{\mathrm{M}}($ drive'$)\left(\mathrm{V}_{\mathrm{M}}\left(\mathrm{j}^{*}\right)\right)=1$
- iff $\mathrm{V}_{\mathrm{M}}\left(\mathrm{j}^{*}\right) \in \mathrm{V}_{\mathrm{M}}\left(\right.$ drink') $\cap \mathrm{V}_{\mathrm{M}}($ drive' $)$

Lambda Conversion

- $\llbracket \lambda v \alpha(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \alpha \rrbracket^{\mathrm{M}, g\left[\mathrm{~V} /\left[\beta \rrbracket^{\mathrm{M}, \mathrm{g}]}\right.\right.}$

■ This implies that all (free) occurrences of the λ-variable v in α get the interpretation of β as value.

- Then: Why not first substitute all free occurrences of of v in α with β (notation: $[\beta / v] \alpha$), and then interpret the simplified expression?
- Actually, the original expression and the result of the substitution are truth-conditionally equivalent (under certain conditions!):
$■ \llbracket \lambda v \alpha(\beta) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \alpha \rrbracket^{\mathrm{M}, g\left[\mathrm{~V} / \llbracket \beta \rrbracket^{M}, \mathrm{~g}\right]}=\llbracket[\beta / \mathrm{V}] \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}$
- $\lambda v \alpha(\beta) \Leftrightarrow[\beta / v] \alpha$

Lambda Conversion: Examples

- drinks and drives $\rightarrow \lambda x\left[\operatorname{drink}^{\prime}(\mathrm{x}) \wedge \operatorname{drive}^{\prime}(\mathrm{x})\right]:\langle\mathrm{e}, \mathrm{t}\rangle$
- John \rightarrow j*: e

■ John drinks and drives $\rightarrow \lambda x\left[\operatorname{drink}^{\prime}(\mathrm{x}) \wedge\right.$ drive‘(x)](j*) : t

$$
\begin{aligned}
& \Leftrightarrow\left[j^{*} / x\right] \operatorname{drink} k^{\prime}(x) \wedge \operatorname{drive}^{\prime}(x) \\
& =\operatorname{drink}^{\prime}\left(j^{*}\right) \wedge \operatorname{drive}^{\prime}\left(j^{*}\right)
\end{aligned}
$$

- John $\rightarrow \lambda F . F\left(j^{*}\right):\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$

■ John drinks and drives $\rightarrow \lambda F\left[F\left(\mathrm{j}^{*}\right)\right]\left(\lambda x\left[\operatorname{drink}^{\prime}(\mathrm{x}) \wedge \mathrm{drive}^{\prime}(\mathrm{x})\right]\right): \mathrm{t}$

$$
\begin{aligned}
& \Leftrightarrow \lambda x\left[\operatorname{drink}^{\prime}(\mathrm{x}) \wedge \operatorname{drive}^{\prime}(\mathrm{x})\right]\left(\mathrm{j}^{*}\right) \\
& \Leftrightarrow \operatorname{drink}^{\prime}\left(\mathrm{j}^{*}\right) \wedge \operatorname{drive}^{\prime}\left(\mathrm{j}^{*}\right)
\end{aligned}
$$

