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Quantification in NL: A Challenge for 
Compositional Semantics 
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∀d (student(d)→ ∃p (paper(p) ∧present(d,p))) 

Every student presented a paper 



The type-theoretic analysis of quantificational NPs 

■  is truth-conditional and strictly compositional at the same 
time 

■  enables a unified interpretation of noun phrases of various 
kinds 

However:  

■  no connection between semantic representation and FOL 
quantifiers (deduction calculi! theorem provers!) 

How can we bring first-order logic into play again? 
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Lambda Abstraction: Motivation 

John drinks and drives 
Someone drinks and drives 

Drinking is unwise 
Drinking and driving is unwise 

Swimming is healthy 
Not smoking is healthy 
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Lambda Abstraction: Example 
■  λx[drive’(x) ∧ drink’(x)] 

■  … denotes the property of “being an x such that x drives and 
drinks”. 

■  λ-abstraction in the above case is applied to a type t expression, 
with the effect that  the argument position(s) marked  by 
variable x are “opened”, thus creating the complex predicate 
λx[drive’(x) ∧ drink’(x)]. 
    drive’: ⟨e,t⟩  x:e  drink’: ⟨e,t⟩  x:e 
         drive’(x): t      drink’(x): t 
     drive’(x) ∧ drink’(x): t 
   j*: e      λx[drive’(x) ∧ drink’(x)]: ⟨e,t⟩ 
          λx[drive’(x) ∧ drink’(x)](j*): t 
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More Examples 

John drinks and drives 

 λx[drink‘(x)∧drive‘(x)])(j*)  

Someone drinks and drives 

 someone‘(λx[drink‘(x)∧drive‘(x)])  

Drinking and driving is unwise 
 ¬wise’(λx.drink’(x) ∧ drive’(x)) 

Not smoking is healthy 
healthy’(λx.¬smoke’(x)) 
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The Language of Typed Lambda Calculus 

■  By adding (a generalized version of) the abstraction rule to 
the language of Type Theory, we extend it to Typed 
Lambda Calculus:  

  If α ∈ WEτ and v ∈ VARσ, then λvα ∈ WE⟨σ,τ⟩. 

■  Notational convention: The scope of the λ-operator is the 
smallest WE to its right. Wider scope must be indicated by 
brackets. We often use the “dot notation” λx.A indicating 
that the λ-operator takes widest possible scope. 
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■  The sets of well-formed expressions WEτ for every type 
τ are given by: 
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ 
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ. 
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in 

WEt.   
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ 

and ∃vφ are in WEt. 
(v)  If α, β are well-formed expressions of the same type,  

then α = β ∈ WEt. 
(vi)  If α ∈ WEτ and v ∈ VARσ, then λvα ∈ WE⟨σ,τ⟩. 

Typed Lambda Calculus: Syntax 



9 

Example 

■  ⟦λx(drink’(x) ∧ drive’(x))⟧M,g = the f : De → Dt such that 
   for all a ∈ De, f(a) = ⟦drink’(x) ∧ drive’(x)⟧M,g[v/a]   

■  f(a) = 1   iff   ⟦drink’(x) ∧ drive’(x)⟧M,g[v/a] = 1 
    iff  ⟦drink’(x)⟧M,g[v/a] = 1 and ⟦drive’(x)⟧M,g[v/a] = 1 
    iff   VM(drink’)(⟦x⟧M,g[v/a]) = VM(drive’)(⟦x⟧M,g[v/a]) = 1  
    iff  VM(drink’)(a) = VM(drive’)(a) = 1 
    iff  a ∈ VM(drink’) ∩ VM(drive’) 

■  ⟦λx(drink’(x) ∧ drive’(x))(j*)⟧M,g = 1   iff 
 ⟦λx(drink’(x) ∧ drive’(x))⟧M,g(⟦j*⟧M,g) = 1    iff 
 VM(j*)  ∈ VM(drink’) ∩ VM(drive’) 



Lambda Abstraction: Interpretation 

■  ⟦λvα⟧M,g is that function f : Dσ → Dτ such that  

  for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]   

      (for α ∈ WEτ, v ∈ VARσ) 
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■  Interpretation with respect to a model structure M = ⟨U, V⟩ 
and a variable assignment g: 
(i)   ⟦α⟧M,g = V(α), if α is a constant 

⟦α⟧M,g = g(α), if α is a variable 
(ii)   ⟦α(β)⟧M,g = ⟦α⟧M,g(⟦β⟧M,g) 

(iii)  ⟦¬φ⟧M,g = 1 iff ⟦φ⟧M,g = 0 
⟦φ ∧ ψ⟧M,g = 1 iff ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1 
⟦φ ∨ ψ⟧M,g = 1 iff ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1 
… 

(iv)  ⟦α = β⟧M,g = 1 iff ⟦α⟧M,g = ⟦β⟧M,g 

(v)   ⟦∃vφ⟧M,g = 1 iff there is a d ∈ Dτ such that ⟦φ⟧M,g[v/d] = 1, if v ∈ VARτ 
⟦∀vφ⟧M,g = 1 iff for all d ∈ Dτ : ⟦φ⟧M,g[v/d] = 1, if v ∈ VARτ 

(vi)  ⟦λvα⟧M,g = f : Dσ → Dτ , with f(a) = ⟦α⟧M,g[v/a] for all a ∈ Dσ ,  

           if v ∈ VARσ and α ∈ WEτ 

Typed Lambda Calculus: Interpretation 



NL Quantifier Expressions: 
Interpretation 
■  someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩ 

■  D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e., 

  the set of functions from P(U) to {0,1},  

  which in turn is equivalent to P(P(U)). 

■  Thus,  VM(someone’) ⊆ P(UM). More specifically: 

■  VM(someone’) = {S ⊆ UM | S ≠∅}, if UM is a domain of persons 
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Example, Continued 

■  If the λ-expression is applied to an overt argument, we can 
simplify the interpretation:  
■  ⟦λvα(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g] 

■  Example: 
■  ⟦λx(drink’(x) ∧ drive’(x))(j*)⟧M,g = 1 
■  iff ⟦drink’(x) ∧ drive’(x)⟧M,g[x/⟦j*⟧M,g] = 1 
■  iff ⟦drink’(x) ∧ drive’(x)⟧M,g[x/VM(j*)] = 1 

■  iff ⟦drink’(x)⟧M,g[x/VM(j*)] = ⟦drive’(x)⟧M,g[x/VM(j*)] = 1 
■  iff VM(drink’)(VM(j*)) =  VM(drive’)(VM(j*)) = 1 
■  iff VM(j*)  ∈ VM(drink’) ∩ VM(drive’) 
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Lambda Conversion 
■  ⟦λvα(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g] 

■  This implies that all (free) occurrences of the λ-variable v in α get 
the interpretation of β as value. 

■  Then: Why not first substitute all free occurrences of of v in α 
with β (notation: [β/v]α), and then interpret the simplified 
expression? 

■  Actually, the original expression and the result of the substitution 
are truth-conditionally equivalent (under certain conditions!): 

■  ⟦λvα(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g] = ⟦[β/v]α⟧M,g 

■  λvα(β) ⇔ [β/v]α 



Lambda Conversion: Examples 

■  drinks and drives � ➔��λx[drink‘(x)∧drive‘(x)] : ⟨e,t⟩ 

■  John ➔ j*:e 

■  John drinks and drives ➔ λx[drink‘(x)∧drive‘(x)](j*) : t 

      ⇔ [j*/x] drink‘(x)∧drive‘(x) 
           =  drink‘(j*) ∧ drive‘(j*) 

■  John � ➔��λF.F(j*): ⟨⟨e,t⟩,t⟩ 

■  John drinks and drives� ➔��λF[F(j*)](λx[drink‘(x)∧drive‘(x)]) : t 

             ⇔ λx[drink‘(x)∧drive‘(x)](j*) 

             ⇔ drink‘(j*) ∧ drive‘(j*) 
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