
Semantic Theory
Lecture 6: Lambda Abstraction

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Quantification in NL: A Challenge for
Compositional Semantics

2

∀d (student(d)→ ∃p (paper(p) ∧present(d,p)))

Every student presented a paper

The type-theoretic analysis of quantificational NPs

■  is truth-conditional and strictly compositional at the same
time

■  enables a unified interpretation of noun phrases of various
kinds

However:

■  no connection between semantic representation and FOL
quantifiers (deduction calculi! theorem provers!)

How can we bring first-order logic into play again?

3

Lambda Abstraction: Motivation

John drinks and drives
Someone drinks and drives

Drinking is unwise
Drinking and driving is unwise

Swimming is healthy
Not smoking is healthy

4

Lambda Abstraction: Example
■  λx[drive’(x) ∧ drink’(x)]

■  … denotes the property of “being an x such that x drives and
drinks”.

■  λ-abstraction in the above case is applied to a type t expression,
with the effect that the argument position(s) marked by
variable x are “opened”, thus creating the complex predicate
λx[drive’(x) ∧ drink’(x)].
 drive’: ⟨e,t⟩ x:e drink’: ⟨e,t⟩ x:e
 drive’(x): t drink’(x): t
 drive’(x) ∧ drink’(x): t
 j*: e λx[drive’(x) ∧ drink’(x)]: ⟨e,t⟩
 λx[drive’(x) ∧ drink’(x)](j*): t

5

More Examples

John drinks and drives

 λx[drink‘(x)∧drive‘(x)])(j*)

Someone drinks and drives

 someone‘(λx[drink‘(x)∧drive‘(x)])

Drinking and driving is unwise
 ¬wise’(λx.drink’(x) ∧ drive’(x))

Not smoking is healthy
healthy’(λx.¬smoke’(x))

6

The Language of Typed Lambda Calculus

■  By adding (a generalized version of) the abstraction rule to
the language of Type Theory, we extend it to Typed
Lambda Calculus:

 If α ∈ WEτ and v ∈ VARσ, then λvα ∈ WE⟨σ,τ⟩.

■  Notational convention: The scope of the λ-operator is the
smallest WE to its right. Wider scope must be indicated by
brackets. We often use the “dot notation” λx.A indicating
that the λ-operator takes widest possible scope.

7

8

■  The sets of well-formed expressions WEτ for every type
τ are given by:
(i)  CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ
(ii)  If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ.
(iii)  If φ, ψ are in WEt, then ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ), (φ↔ψ) are in

WEt.
(iv)  If φ is in WEt and v is a variable of arbitrary type, then ∀vφ

and ∃vφ are in WEt.
(v)  If α, β are well-formed expressions of the same type,

then α = β ∈ WEt.
(vi)  If α ∈ WEτ and v ∈ VARσ, then λvα ∈ WE⟨σ,τ⟩.

Typed Lambda Calculus: Syntax

9

Example

■  ⟦λx(drink’(x) ∧ drive’(x))⟧M,g = the f : De → Dt such that
 for all a ∈ De, f(a) = ⟦drink’(x) ∧ drive’(x)⟧M,g[v/a]

■  f(a) = 1 iff ⟦drink’(x) ∧ drive’(x)⟧M,g[v/a] = 1
 iff ⟦drink’(x)⟧M,g[v/a] = 1 and ⟦drive’(x)⟧M,g[v/a] = 1
 iff VM(drink’)(⟦x⟧M,g[v/a]) = VM(drive’)(⟦x⟧M,g[v/a]) = 1
 iff VM(drink’)(a) = VM(drive’)(a) = 1
 iff a ∈ VM(drink’) ∩ VM(drive’)

■  ⟦λx(drink’(x) ∧ drive’(x))(j*)⟧M,g = 1 iff
 ⟦λx(drink’(x) ∧ drive’(x))⟧M,g(⟦j*⟧M,g) = 1 iff
 VM(j*) ∈ VM(drink’) ∩ VM(drive’)

Lambda Abstraction: Interpretation

■  ⟦λvα⟧M,g is that function f : Dσ → Dτ such that

 for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]

 (for α ∈ WEτ, v ∈ VARσ)

10

11

■  Interpretation with respect to a model structure M = ⟨U, V⟩
and a variable assignment g:
(i)   ⟦α⟧M,g = V(α), if α is a constant

⟦α⟧M,g = g(α), if α is a variable
(ii)   ⟦α(β)⟧M,g = ⟦α⟧M,g(⟦β⟧M,g)

(iii)  ⟦¬φ⟧M,g = 1 iff ⟦φ⟧M,g = 0
⟦φ ∧ ψ⟧M,g = 1 iff ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1
⟦φ ∨ ψ⟧M,g = 1 iff ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1
…

(iv)  ⟦α = β⟧M,g = 1 iff ⟦α⟧M,g = ⟦β⟧M,g

(v)   ⟦∃vφ⟧M,g = 1 iff there is a d ∈ Dτ such that ⟦φ⟧M,g[v/d] = 1, if v ∈ VARτ
⟦∀vφ⟧M,g = 1 iff for all d ∈ Dτ : ⟦φ⟧M,g[v/d] = 1, if v ∈ VARτ

(vi)  ⟦λvα⟧M,g = f : Dσ → Dτ , with f(a) = ⟦α⟧M,g[v/a] for all a ∈ Dσ ,

 if v ∈ VARσ and α ∈ WEτ

Typed Lambda Calculus: Interpretation

NL Quantifier Expressions:
Interpretation
■  someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩

■  D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e.,

 the set of functions from P(U) to {0,1},

 which in turn is equivalent to P(P(U)).

■  Thus, VM(someone’) ⊆ P(UM). More specifically:

■  VM(someone’) = {S ⊆ UM | S ≠∅}, if UM is a domain of persons

12

13

Example, Continued

■  If the λ-expression is applied to an overt argument, we can
simplify the interpretation:
■  ⟦λvα(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]

■  Example:
■  ⟦λx(drink’(x) ∧ drive’(x))(j*)⟧M,g = 1
■  iff ⟦drink’(x) ∧ drive’(x)⟧M,g[x/⟦j*⟧M,g] = 1
■  iff ⟦drink’(x) ∧ drive’(x)⟧M,g[x/VM(j*)] = 1

■  iff ⟦drink’(x)⟧M,g[x/VM(j*)] = ⟦drive’(x)⟧M,g[x/VM(j*)] = 1
■  iff VM(drink’)(VM(j*)) = VM(drive’)(VM(j*)) = 1
■  iff VM(j*) ∈ VM(drink’) ∩ VM(drive’)

14

Lambda Conversion
■  ⟦λvα(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]

■  This implies that all (free) occurrences of the λ-variable v in α get
the interpretation of β as value.

■  Then: Why not first substitute all free occurrences of of v in α
with β (notation: [β/v]α), and then interpret the simplified
expression?

■  Actually, the original expression and the result of the substitution
are truth-conditionally equivalent (under certain conditions!):

■  ⟦λvα(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g] = ⟦[β/v]α⟧M,g

■  λvα(β) ⇔ [β/v]α

Lambda Conversion: Examples

■  drinks and drives � ➔��λx[drink‘(x)∧drive‘(x)] : ⟨e,t⟩

■  John ➔ j*:e

■  John drinks and drives ➔ λx[drink‘(x)∧drive‘(x)](j*) : t

 ⇔ [j*/x] drink‘(x)∧drive‘(x)
 = drink‘(j*) ∧ drive‘(j*)

■  John � ➔��λF.F(j*): ⟨⟨e,t⟩,t⟩

■  John drinks and drives� ➔��λF[F(j*)](λx[drink‘(x)∧drive‘(x)]) : t

 ⇔ λx[drink‘(x)∧drive‘(x)](j*)

 ⇔ drink‘(j*) ∧ drive‘(j*)

15

