Semantic Theory

Lecture 6: Lambda Abstraction

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Quantification in NL: A Challenge for

Compositional Semantics

Every student presented a paper

N\

Vd (student(d)— 3Jp (paper(p) apresent(d,p)))

The type-theoretic analysis of quantificational NPs

m IS truth-conditional and strictly compositional at the same
time

m enables a unified interpretation of noun phrases of various
kinds

However:

m No connection between semantic representation and FOL
guantifiers (deduction calculi! theorem provers!)

How can we bring first-order logic into play again?

Lambda Abstraction: Motivation

John drinks and drives
Someone drinks and drives

Drinking is unwise
Drinking and driving is unwise

Swimming is healthy
Not smoking is healthy

Lambda Abstraction: Example

m Ax[drive’(x) A drink’(x)]

m ... denotes the property of “being an x such that x drives and
drinks”.

m A-abstraction in the above case is applied to a type t expression,
with the effect that the argument position(s) marked by
variable x are “opened”, thus creating the complex predicate

Ax[drive'(x) a drink’(x)].
drive’: {(e,t) x:e drink’: {e,t) x:e
drive’(x): t drink’(x): t
drive’(x) a drink’(x): t
[*: e Ax[drive’(x) A drink’(x)]: {(e,t)
Ax[drive’(x) a drink’(x)](j*): t

More Examples

John drinks and drives
Ax[drink‘(x)adrive‘(x)1)(j*)

Someone drinks and drives
someone’(Ax[drink‘(x)adrive‘(x)])

Drinking and driving is unwise
—wise’(Ax.drink’(x) A drive’(x))

Not smoking is healthy
healthy’ (Ax.~smoke’(x))

The Language of Typed Lambda Calculus

m By adding (a generalized version of) the abstraction rule to
the language of Type Theory, we extend it to Typed
Lambda Calculus:

If a € WET and v € VAR, then Ava € WE, ..

m Notational convention: The scope of the A-operator is the
smallest WE to its right. Wider scope must be indicated by
brackets. We often use the “dot notation” Ax.A indicating
that the A-operator takes widest possible scope.

Typed Lambda Calculus: Syntax

m The sets of well-formed expressions WE-~ for every type
T are given by:
(i) CON-: € WE:and VAR: € WE-, for every type T
(i) Ifais in WE¢s, v, B in WEo, then a(B) € WE-.

(iii) If @, g are in WE¢, then —o, (pAy), (pvy), (p—y), (p~y) are in
WE:.

(iv) If @ is in WEtand v is a variable of arbitrary type, then Vv¢
and dve are in WEt.

(v) If a, B are well-formed expressions of the same type,
then a = B € WE:.

(vi) If a € WET and v € VAR, then Ava € WE, .,.

Example

m [AX(drink’(x) A drive’(x))]M9 = the f : De — Dt such that
for all a € De, f(a) = [drink’(x) A drive’(x)V-.9lv/al

m f(a)=1 iff
iff
Iff
Iff
iff

[drink’(x) A drive’(x)M.9lv/al = 1
[drink’(x)J™9lv/al = 1 and [drive’(x)]M9lval = 1
Vy(drink’)([xI™-etv/al) =V, (drive’)([x]M9olval) = 1
Vy(drink’)(a) = Vy(drive')(a) = 1

a € Vy(drink’) n Vy(drive’)

m [Ax(drink’(x) A drive’(x))(j*)IM9 =1 iFf
[AX(drink’(x) A drive’(x))IM9([j*I™9) = 1 iff
Vu(j*) € Vy(drink’) n Vy(drive’)

Lambda Abstraction: Interpretation

m [Ava]M9 is that function f : Dg — D+ such that
for all a € Dg, f(a) = [aJ™9lv/al

(for o € WE-+, v € VARy)

10

Typed Lambda Calculus: Interpretation

m Interpretation with respect to a model structure M = (U, V)

and a variable assignment g:

(i) [aI9 = V(a), if a is a constant
[a™9 = g(a), if a is a variable

(ii) [o(B)IM9 = [oI™9(IBIM9)

(iii) [—oIM9 =1 iff [eI"9 =10
[A wIM9 = 1 iff [IM9 =1 and [y]M9 =1
[o v gyIM9 = 1 iff [eIM9 =1 or [p]™9 =1

(iv) [o = BIM9 = 1 iff [aI™9 = [BI™9

(v) [3AvelM9 = 1 iff there is a d € D« such that [e]M9vdl = 1, if v € VAR«
[VveIM9 = 1 iff for all d € D« : [@IM9lVd]l = 1, if v € VAR«

(vi) [AvaJ"9 =f: D, — D., with f(a) = [a]"9v/alfor all a € D,

if v € VAR, and a € WE,
11

NL Quantifier Expressions:

Interpretation

m someone’€© CON,, y 1, SO Vy(someone') € Doy
m Dieyyis the set of functions from D, to D, i.e.,
the set of functions from $(U) to {0,1},
which in turn is equivalent to P(P(U)).

m Thus, Vy(someone’') € P(U,). More specifically:

m Vy(someone’) = {Sc Uy, |S =9}, if Uy, is a domain of persons

12

Example, Continued

m If the A-expression is applied to an overt argument, we can

simplify the interpretation:

[Ava(B)IM9 = [oM-olv/IRI™o]

m Example:

[AX(drink’(x) A drive’(x))(j*)IM9 = 1

iff [drink’(x) A drive’(x)M-alX/IFme]l = 7

iff [drink’(x) A drive’(x)MobVui"] = 1

iff [drink’(x)IM-.9xVuU9] = [drive’ (x)IM9xVyi1l = 1
iff Vm(drink’)(Vm(j*)) = Vwm(drive')(Vm(j*)) = 1
iff Vi, (j*) € Vy(drink’) n Vy(drive’)

13

Lambda Conversion

[AVO(B)IM9 = [oJM.9lv/IBIMs]

m This implies that all (free) occurrences of the A-variable v in a get
the interpretation of B as value.

m Then: Why not first substitute all free occurrences of of vin a
with B (notation: [B/v]a), and then interpret the simplified
expression?

m Actually, the original expression and the result of the substitution
are truth-conditionally equivalent (under certain conditions!):

s [Ava(B)IM9 = [oMotvIBIMel = [[B/v]agM-9

m Ava(B) = [B/v]a

14

Lambda Conversion: Examples

m drinks and drives = ax[drink‘(x)adrive’(x)] : {e,t)
m John = j*:.e
m John drinks and drives = Ax[drink’(x)adrive’(x)](j*) : t

e [j*/x] drink’(x)adrive’(x)
= drink‘(j*) A drive‘(j*)

m John = MF.F(j*): ((e,t),t)

m John drinks and drives = AF[F(j*)1(Ax[drink’(x)adrive‘(x)]) : t
e Ax[drink‘(x)adrive’(x)](j*)
e drink’(j*) A drive‘(j*)

15

