Semantic Theory Lecture 6: Lambda Abstraction

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Quantification in NL: A Challenge for Compositional Semantics

Every student presented *a* paper

∀d (student(d)→ $\exists p$ (paper(p) ^present(d,p)))

The type-theoretic analysis of quantificational NPs

- is truth-conditional and strictly compositional at the same time
- enables a unified interpretation of noun phrases of various kinds

However:

no connection between semantic representation and FOL quantifiers (deduction calculi! theorem provers!)

How can we bring first-order logic into play again?

Lambda Abstraction: Motivation

John drinks and drives Someone drinks and drives

Drinking is unwise Drinking and driving is unwise

Swimming is healthy Not smoking is healthy

Lambda Abstraction: Example

- λx[drive'(x) ∧ drink'(x)]
- ... denotes the property of "being an x such that x drives and drinks".
- λ-abstraction in the above case is applied to a type t expression, with the effect that the argument position(s) marked by variable x are "opened", thus creating the complex predicate λx[drive'(x) ∧ drink'(x)].

	<u>drive': (e,t) x:e</u>	<u>drink': (e,t) x:e</u>
	drive'(x): t	drink'(x): t
	<u>drive'(x) ^ drink'(x): t</u>	
<u>j*: e</u>	λx[drive'(x) Λ drir	<u>nk'(x)]: (e,t)</u>
λ	x[drive'(x) ^ drink'(x	x)](j*): t

More Examples

John drinks and drives

 $\lambda x[drink'(x) \land drive'(x)])(j*)$

Someone drinks and drives

someone'($\lambda x[drink'(x) \land drive'(x)]$)

Drinking and driving is unwise ¬wise'(λx.drink'(x) ∧ drive'(x))

Not smoking is healthy

healthy'(λx . \neg smoke'(x))

The Language of Typed Lambda Calculus

 By adding (a generalized version of) the abstraction rule to the language of Type Theory, we extend it to Typed Lambda Calculus:

If $\alpha \in WE\tau$ and $v \in VAR_{\sigma}$, then $\lambda v \alpha \in WE_{\langle \sigma, \tau \rangle}$.

Notational convention: The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets. We often use the "dot notation" λx.A indicating that the λ-operator takes widest possible scope.

Typed Lambda Calculus: Syntax

- The sets of well-formed expressions WE_τ for every type τ are given by:
 - (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$, for every type τ
 - (ii) If α is in WE_(σ, τ), β in WE_{σ}, then $\alpha(\beta) \in$ WE_{τ}.
 - (iii) If ϕ , ψ are in WE_t, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are in WE_t.
 - (iv) If ϕ is in WE_t and v is a variable of arbitrary type, then $\forall v \phi$ and $\exists v \phi$ are in WE_t.
 - (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$.
 - (vi) If $\alpha \in WE\tau$ and $v \in VAR_{\sigma}$, then $\lambda v \alpha \in WE_{(\sigma,\tau)}$.

Example

$$\begin{split} & [\lambda x(drink'(x) \land drive'(x))]^{M,g} = the \ f : D_e \to D_t \ such \ that \\ & for \ all \ a \in D_e, \ f(a) = [drink'(x) \land drive'(x)]^{M,g[\nu/a]} \end{split}$$

- $\begin{array}{ll} f(a)=1 & \mbox{iff} & [[drink'(x) \wedge drive'(x)]]^{M,g[v/a]}=1 \\ & \mbox{iff} & [[drink'(x)]]^{M,g[v/a]}=1 \mbox{and} [[drive'(x)]]^{M,g[v/a]}=1 \\ & \mbox{iff} & V_{M}(drink')([[x]]^{M,g[v/a]})=V_{M}(drive')([[x]]^{M,g[v/a]})=1 \\ & \mbox{iff} & V_{M}(drink')(a)=V_{M}(drive')(a)=1 \\ & \mbox{iff} & a \in V_{M}(drink') \cap V_{M}(drive') \end{array}$
- $$\begin{split} & [\lambda x(drink'(x) \land drive'(x))(j^*)]^{M,g} = 1 & \text{iff} \\ & [\lambda x(drink'(x) \land drive'(x))]^{M,g}([j^*]^{M,g}) = 1 & \text{iff} \\ & V_M(j^*) \in V_M(drink') \cap V_M(drive') \end{split}$$

Lambda Abstraction: Interpretation

[$\lambda v \alpha$]^{M,g} is that function f : $D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}$, f(a) = [α]^{M,g[v/a]}

(for $\alpha \in WE_{\tau}$, $v \in VAR_{\sigma}$)

Typed Lambda Calculus: Interpretation

- Interpretation with respect to a model structure M = (U, V) and a variable assignment g:
 - (i) $\llbracket \alpha \rrbracket^{M,g} = V(\alpha)$, if α is a constant $\llbracket \alpha \rrbracket^{M,g} = g(\alpha)$, if α is a variable
 - (ii) $\llbracket \alpha(\beta) \rrbracket^{M,g} = \llbracket \alpha \rrbracket^{M,g}(\llbracket \beta \rrbracket^{M,g})$

(iii)
$$\llbracket \neg \phi \rrbracket^{M,g} = 1$$
 iff $\llbracket \phi \rrbracket^{M,g} = 0$
 $\llbracket \phi \land \psi \rrbracket^{M,g} = 1$ iff $\llbracket \phi \rrbracket^{M,g} = 1$ and $\llbracket \psi \rrbracket^{M,g} = 1$
 $\llbracket \phi \lor \psi \rrbracket^{M,g} = 1$ iff $\llbracket \phi \rrbracket^{M,g} = 1$ or $\llbracket \psi \rrbracket^{M,g} = 1$

- (iv) $\llbracket \alpha = \beta \rrbracket^{M,g} = 1$ iff $\llbracket \alpha \rrbracket^{M,g} = \llbracket \beta \rrbracket^{M,g}$
- (v) $\llbracket \exists v \phi \rrbracket^{M,g} = 1$ iff there is a $d \in D_{\tau}$ such that $\llbracket \phi \rrbracket^{M,g[v/d]} = 1$, if $v \in VAR_{\tau}$ $\llbracket \forall v \phi \rrbracket^{M,g} = 1$ iff for all $d \in D_{\tau} : \llbracket \phi \rrbracket^{M,g[v/d]} = 1$, if $v \in VAR_{\tau}$
- (vi) $[\lambda v \alpha]^{M,g} = f : D_{\sigma} \to D_{\tau}$, with $f(a) = [\alpha]^{M,g[v/a]}$ for all $a \in D_{\sigma}$,

if $v \in VAR_{\sigma}$ and $\alpha \in WE_{\tau}$

NL Quantifier Expressions: Interpretation

- someone' $\in CON_{\langle\langle e,t\rangle,t\rangle}$, so V_M (someone') $\in D_{\langle\langle e,t\rangle,t\rangle}$
- $D_{\langle (e,t\rangle,t\rangle}$ is the set of functions from $D_{\langle e,t\rangle}$ to D_t , i.e., the set of functions from $\mathcal{P}(U)$ to $\{0,1\}$, which in turn is equivalent to $\mathcal{P}(\mathcal{P}(U))$.
- Thus, V_{M} (someone') $\subseteq \mathcal{P}(U_{M})$. More specifically:
- V_M (someone') = {S ⊆ U_M | S ≠Ø}, if U_M is a domain of persons

Example, Continued

- If the λ-expression is applied to an overt argument, we can simplify the interpretation:
 - $[[\lambda \lor \alpha(\beta)]^{\mathsf{M},\mathsf{g}} = [[\alpha]]^{\mathsf{M},\mathsf{g}[\lor/[[\beta]]^{\mathsf{M},\mathsf{g}}]}$
- Example:
 - $[\lambda x(drink'(x) \wedge drive'(x))(j^*)]^{M,g} = 1$
 - iff $[drink'(x) \wedge drive'(x)]^{M,g[x/[j*]M,g]} = 1$
 - iff [drink'(x) ∧ drive'(x)]^{M,g[x/V_M(j*)]} = 1
 - iff $[drink'(x)]^{M,g[x/V_M(j^*)]} = [drive'(x)]^{M,g[x/V_M(j^*)]} = 1$
 - iff V_M(drink')(V_M(j*)) = V_M(drive')(V_M(j*)) = 1
 - iff $V_M(j^*) \in V_M(drink') \cap V_M(drive')$

Lambda Conversion

- This implies that all (free) occurrences of the λ -variable v in α get the interpretation of β as value.
- Then: Why not first substitute all free occurrences of of v in α with β (notation: [β/v]α), and then interpret the simplified expression?
- Actually, the original expression and the result of the substitution are truth-conditionally equivalent (under certain conditions!):
- λνα(β) ⇔ [β/ν]α

Lambda Conversion: Examples

- *drinks and drives* $\rightarrow \lambda x[drink'(x)_{\Lambda}drive'(x)]: (e,t)$
- John → j*:e
- John drinks and drives $\rightarrow \lambda x[drink'(x)_{\Lambda}drive'(x)](j^*)$: t

 \Leftrightarrow [j*/x] drink'(x) \land drive'(x)

= drink'(j*) ^ drive'(j*)

■ John → $\lambda F.F(j^*)$: ((e,t),t)

■ John drinks and drives $\rightarrow \lambda F[F(j^*)](\lambda x[drink'(x)_drive'(x)])$:t

```
\Leftrightarrow \lambda x[drink'(x) \land drive'(x)](j^*)
```

 \Leftrightarrow drink'(j*) \land drive'(j*)